
ME 133b Final Report

Big picture
Our project was recreating the classic arcade game Pac-Man.Wewere inspired by the
unique personalities of the ghosts: Bliny, Pinky, Incky, and Clyde. Their “personalities” are
attributed to their different styles in pursuing Pac-man. In other words, they have different
path finding algorithms. Our goal was to solve how to catch amoving target, withmultiple
pursuers. This required determining how to coordinate pursuers to corner the target.We
explored using different grids, goal nodes, and parameters to optimize (shortest path,
repulsion of ghosts, etc.). The challengewas determiningwhat behavior wewanted the
ghosts to have.We had to keep inmind that we didn’t want the ghost to follow the same path,
that each ghost found an optimal path (based on the paths already computed, but not
restricted by these paths).We used our understanding of path finding algorithms like A*, to
base our planner.

Approach
Our overall goal was to coordinate four ghosts to pursue Pac-Man. There were twomain
approaches we took: sequentially planning for each ghost and simultaneously planning for
all the ghosts. Bothmethods planwithin the same time step, and therefore the difference in
order could be overlooked (Figure 1).

Figure 1:Sequential versus simultaneous.

We used A* to compute our paths. Since the ghosts’ objective is to capture Pac-Man, they
could take an aggressive approach of each following the shortest path. However, if the
ghosts eventuallymerge to the same tile, then all the ghosts would follow the same path (left
panel of Figure 2). For this reason, wemust guarantee that each ghost can compute unique
paths. Another behavior wewanted to avoid was trailing. Thus, wewanted the ghosts to
avoid following the same path. This was done through either blocking or penalizing.

Sequential Planner:

In the sequential code, we solve for each ghost path separately.We first compute and sort
the Euclidean distance from each ghost to Pac-Man.We then determine the path for the
closest ghost to Pac-Man using A* and block the resulting path for the next closest ghost
repeating A*. If no path is found for the ghost due to nodes from prior ghosts blocking any
paths towards Pac-Man’s position, we reinitialize the grid and compute the optimal path
from that ghost to PacMan. Thismay cause overlap in the paths planned towards Pac-Man
but since the closest ghosts already reach Pac-Man, the farther ghosts will never overlap in
positionwith the closer ghosts. The result of this approach is shown in the right panel of
Figure 2. This approach ensures that all Ghosts aremoving towards Pac-Man in various
directions.

Figure 2: Left: Trailing Ghosts example where each . Right: Sequential A* planner after
blocking nodes. The yellow circle indicates Pac-Man's position.

The complexity increases whenwe add twomore ghosts. If Pac-Man is in a hallway, then
after the first two paths have been solved for, no solutionwill be found afterwards for the
remaining two ghosts. Similarly, if Pac-Man is at a 3-way intersection, then the last ghost will
be unable to find a path. To account for these scenarios, if the planner returns an empty list,
thenwe ask the planner to solve for the shortest pathwith the original grid.Without this
additional step, the ghosts would remain still since they have no path to follow. Refer to the
video to see this implementationwith our GUI.

Region Planner.

Since Pac-Man always has at least two directions that a ghost could come from, we had the
first two closest ghosts still be a sequential planner. However, since the first two ghosts are

sequential; having the other two ghosts also being sequential means that planning is not
possible and thus the optimal path is taken. Since the ghosts are further away, it might be
better for the remaining two ghosts to path to where Pac-Manmight approach. To do so, we
have the ghost target a point within the region around Pac-Man. This regionwould be found
by going n steps deep in a breadfirst exploration around Pac-Man and taking all of those
points within that region. This represented all of the possible locations that Pac-Man could
be at after doing nmoves. From there, the ghost would choose a location randomly within
this region and path towards using A*. Since it was possible for two ghosts to target the
same point,we had the ghost target 2 different points so that the ghost could cut Pac-Man off
at different locations. Refer to the video to see this implementationwith our GUI.

Multi-dimensional Planner:

To simultaneously coordinate the path of all ghosts, we implemented amulti-dimensional
path planner using A* algorithm. For this, we consider one node of our graph to contain the
coordinates (row, col) of each ghost chasing pac-man.We only use two ghosts with this

planner to reduce the number of nodes generated and searched using our planner to 212

nodes. In Figure 3, we show the resulting paths of ghost 1 and 2with no separation between
ghosts in the estimated cost-to-go function (left panel) and separation enforced between
the paths the ghosts take (right panel). Refer to the video to see this implementationwith
our GUI.

Figure 3: Left: Multi-dimensional planner with no separation between ghosts in A*
estimated cost-to-go (). Right: Multi-dimensional planner with separation betweenβ = 0
ghosts in A* estimated cost-to-go (). The yellow circle indicates Pac-Man’s position.β = 0. 5

Technical Details

Sequential Planner

Our 2D graph is amaze of continuous flow along a singular pathway. The ghosts and
Pac-Man are often limited to two directions tomove in. Atmost, Pac-Man has four possible
directions tomove in, if he is at a 4way intersection. Furthermore, the grid is 21x21 and
symmetric about the vertical axis.We used ‘#” to represent walls.

The base cost function usedwas total_cost = cost to go + cost to to reach, where the cost to go
was calculated usingManhattan distance and cost to reachwas 1 per step.

Region Planner

To find the region around Pacman, we did a DFS search around pacman goin n-steps deep to
get the locations that Pacmam can be at. The target nodes for the two furthest ghosts from
Pac-Man’s current locationwere assigned by randomly selecting two nodes from the DFS.
The two nearest ghosts traveled towards Pac-Man’s location similar to the sequential
planner.

Multi-dimensional Planner:

We used the A* algorithm as the basis for our path planner. However, since each node is
four-dimensional, we assigned a different set of actions from the conventional 2D
grid-based planners. The actions are pulled from where each arrow{←, →, ↑, ↓, 0}
corresponds to one of the ghostsmoving over to the adjacent grid cell from its current
position in the prescribed direction. The last element of this set 0 defines the ghost as
stationary. We define all combinations of two elements from the given set as our actions for
each node except the case where both ghosts are stationary (0,0). Figure 4 highlights a few
example actions both ghosts could take.We iterate through these actions using our A*
algorithm to identify neighboring nodes to add to our onDeck queue. To ensure adequate
separation between ghosts during path planning, we enforce the following cost-to-go,

where is theManhattan distance between the current and𝐶
^

𝑡𝑜𝑔𝑜
= 𝑑(𝑛

𝑐𝑢𝑟𝑟𝑒𝑛𝑡
, 𝑛

𝑔𝑜𝑎𝑙
) − β · 𝑠 𝑑

goal node and is theManhattan distance between ghost 1 and ghost 2 position. See Figure 3𝑠
for examples of how adjusting alters the resulting path jointly planned for ghost 1 and 2.β

Figure 4: Example actions the set of ghosts takes in ourmulti-dimensional planner.

Method Implementation Pros Cons

Sequential In order of closeness
to Pac-Man, this
algorithm solves for
one ghost path at a
time, each time
blocking out the
path found for the
next solution. If no
solution is found, it
solves for the
shortest path on a
cleared grid.

The ghosts are
aggressive and
trailing is
uncommon.

Computationally
expensive

Sequential + Region Since Pac-Man can
always be
approached from
two directions we
had our two closest
ghost target pacman
in this way. The two
further pacman
then insteadwent
towards a random
point chosen n away
frompacman.

Less
computationally
expensive than
sequential. Possible
to intercept the
targets.

Not as aggressive as
sequential.

Multi-dimensional This approach
simultaneously
solves for the path of
multiple ghosts.
Each node contains
the positions of all
ghosts and the
actions performed
on each node define
jointmovements for
all ghosts.

Jointly plans a path
for all ghosts
towards Pac-Man
each iteration in the
gamewith a cost
function that
penalizes the
proximity of ghosts.

Computationally
expensive due to the
number of nodes (

) to212 = 2008
generate and search
through and the
number of actions (

) to52 − 1 = 24
iterate through
during A*.

Conclusions

We found that there weremany trade-offs to consider when implementing the
various planners with the goal of all ghosts reaching and cornering Pac-Man. In the
sequential planner, we solved for the path of one ghost at a time in order of distance
from Pac-Man’s location and blocked off nodes from the previous ghosts’ paths for
each subsequent ghost. While this approach created unique paths for each ghost to
corner Pac-Man, themain issue is that it was computationally expensive. The
region+sequential planner performed a DFS around Pac-Man to identify places
n-steps deep from Pac-Man’s location for the farthest two ghosts from Pac-Man to
target while the closest two ghosts path plan towards Pac-Man’s location. This
approachwas less computationally expensive than the sequential planner and
planned to locations where Pac-Man couldmove to. However, this planner was not
as aggressive in reaching Pac-Man than the sequential planner. The
multi-dimensional planner simultaneously planned the ghosts’ paths each iteration
of the game.With this approach, we could actively control the degree of separation
between ghosts as they approach Pac-Man. However, due to the number of nodes
searched for and generated alongwith the number of actions to iterate through in
A*, this approachwas computationally expensive sowe limited it to only two ghosts.
One areawe hope to explore in the future is the use of the region+sequential planner
as we are able to target locations where Pac-Man could go to with this approach.

